The Earliest Roots of Adult Disease

Robert Murray MD
The Ohio State University
Objectives

• Describe the concept of fetal origins of adult diseases
• Discuss how “epigenetics” plays a role in shaping development during and after pregnancy
• Understand the differences between breast and bottle fed infants in terms of future health risk
Health Risk
Parenthood begins at conception.
Epigenetics = the Role of the Environment

What if our genes are turned on or off by our experiences?
The Dutch Famine

Hunger Winter in Holland, 1944-45

Daily rations: 400-1000 kcal

Pregnancy outcomes tied to famine

Clement Smith MD:

Babies born to malnourished mothers
 - Lower birth weight by 200 grams
 - Brain damage & poor mental performance
 - Higher obesity rates among males
Follow Up of Dutch Famine Cases

- 2414 cohort born during the famine
- Now aged 50-58 years
- Famine’s effect: early, mid-, late-gestation
- Consequences in diverse systems:
 - Glucose-insulin axis
 - Cardiovascular risk factors
 - Renal function
 - Airway disease
 - Breast cancer

Roseboom, 2006
Evolution of an Idea

Neel (1962):

“the thrifty genotype”

- During evolution, when food was scarce, efficient fat storage enhanced survival
- During abundance, such genes cause obesity, insulin resistance, diabetes and heart disease
Evolution of an Idea

- Hales and Barker (1992): “the thrifty phenotype”
 - With poor nutrition, the fetus adapts to survive
 - With abundance later in life, such adaptations result in diseases and obesity

Our adult health begins as a fetus
Pregnancy “Programs”
Adult Diseases

- Obesity
- High blood pressure
- High cholesterol
- Heart disease
- Stroke
- Diabetes
- Mental health disorders
Nutrition is only one Stress that Forces the Fetus To Adapt
Not Just *Nutritional* Stress

- Energy or protein
- Placenta
- Blood flow
- Corticosteroids
- Smoking
- Alcohol
- Toxins
- Oxygen
- Blood sugar
Epigenetics

Diet Quality
Pre-pregnancy/ Pregnancy/ Postnatal
Too little/ Imbalance/ Too Much

Tissues Remodel
Function Changes
Cells Dysfunction
Metabolism Changes

DEVELOPMENT SHIFTS

Structure and Function Changes
Body composition
Heart & Blood vessels
Appetite and energy control
Hypertension: *Kidney*

- Very low protein within a “critical window”

- **Adaptations**
 - Decrease total number of cells
 - Increasing single-nephron work load
 - Development of scarring
 - Nephrons die off
 - Sodium builds up in blood
 - High blood pressure

Adaptations as a fetus

Becomes “maladaptive” as an adult

Brenner BM, et al
“Epigenetics” means...

What happens to mom
Happens to baby
Maternal Stress
Van den Bergh BRH, et al.

High stress can cause behavioral changes in the child

- Stress = “stress hormones”
 - Physical demands
 - High fatigue score
 - Sleeplessness
 - Mental stress
 - Trauma, injury, illness

Mental and behavioral health problems in the child
Even Before the Pregnancy Test

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 5-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>The embryo implants</td>
<td>Brain vesicles</td>
</tr>
<tr>
<td>Week 3-4</td>
<td>Spinal, cranial nerves</td>
</tr>
<tr>
<td>Notocord, neural folds</td>
<td>Heart valves</td>
</tr>
<tr>
<td>Head, tail, soma</td>
<td>Coronary vessels</td>
</tr>
<tr>
<td>Heart tubes</td>
<td>Metanephric kidney</td>
</tr>
<tr>
<td>Optic vessels</td>
<td>Gut lumen</td>
</tr>
<tr>
<td>Fore-, hind-brain</td>
<td></td>
</tr>
<tr>
<td>limbs</td>
<td></td>
</tr>
</tbody>
</table>

...much has already developed
Women in Child-bearing Years

- Intake high:
 - saturated fat and sodium
- Deficiency common:
 - iron, vitamin D
- Intake low:
 - fiber, vitamin E, calcium, magnesium and potassium
- Intake moderately low:
 - vitamins A, C, B-6 and Folate
Excess Gestational Weight Gain

- Pre-pregnancy factors account for $\frac{3}{4}$ --
 - Age
 - Race/ethnicity
 - Education
 - Parity
 - Height
 - Pre-conception BMI
 - Diabetes
 - Hypertension
High or Low Maternal Weight

- Fetal growth and anomalies
- Macrosomia (obese), IUGR (underweight)
- Gestational hypertension, preeclampsia
- Gestational diabetes
- Preterm birth (underweight), spontaneous
- Preterm births (obese), medical
Weight Gain during Pregnancy

- Individualized by pre-pregnancy BMI
- Lowers risk for mother & baby
- Institute of Medicine, 1990

<table>
<thead>
<tr>
<th>BMI</th>
<th>Weight Gain (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 19.8</td>
<td>28-40</td>
</tr>
<tr>
<td>19.8-26</td>
<td>25-35</td>
</tr>
<tr>
<td>26-29</td>
<td>15-25</td>
</tr>
<tr>
<td>Twin pregnancy</td>
<td>35-45</td>
</tr>
<tr>
<td>Teens, Blacks</td>
<td>Higher end of ranges</td>
</tr>
</tbody>
</table>
Emphasize Diet Quality

NOT DIETS
2010 Dietary Guidelines

Meals and snacks from 5 food groups
- Fruits
- Vegetables
- Whole grains
- Low-fat milk and dairy
- Lean meats, quality protein

Control excess weight

Balance intake with daily activity

Nutrition from every calorie: “nutrient rich foods”
USDA Eating Pattern = Health

- Heart Disease
- Stroke
- Diabetes
- Obesity
- Hypertension
- Metabolic syndrome
- Osteoporosis
- Cancers

Dietary Guidelines for Americans 2010
The First Weeks *Add* Risks
What if there is a critical window for first feeding?
• Calories very low weeks 1-3 (lactation)
 – Free access to diet after
 – Slowed weight gain \textit{for life}

• Calories low in weeks 9-12
 – Slowed weight gain \textit{only briefly}

\textbf{Early life stress can cause permanent changes}
Experimental Evidence

- **Preterm infants** (926) randomized at birth to receive standard formula, donor breast milk or enriched pre-term formula
- 216 infants examined at age 13-16 years
- **Enriched formula**
 - \uparrow Blood pressure
 - \uparrow Cholesterol
 - \uparrow Obesity
 - \uparrow Insulin Resistance

Lucas and Singhal, 2003, 2004
The Critical Window

Singhal & Lucas (2004):
- Rapid weight gain programs the heart and metabolism for life
- Critical window: the first 2 weeks
Early Rapid Weight Gain Results in Increased Long-term Issues

- Weight gain during week 1 associated with adult obesity\(^1\)
- Rapid weight gain during the first 4 months of life is associated with obesity in childhood and young adulthood\(^2\)
- More rapid increases in weight-for-length in the first 6 months are associated with sharply increased risk of obesity at age 3\(^3\)

Early Rapid Weight Gain Increases the Risk for Obesity

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stettler, 2002</td>
<td>Pattern of rapid weight gain during first 4 months of life associated with being overweight at age 7(^1)</td>
</tr>
<tr>
<td>Dubois, 2006</td>
<td>Double the odds of being overweight at age 4.5 years if in the highest quintiles of weight gain between birth and 5 months(^2)</td>
</tr>
<tr>
<td>Taveras, 2009</td>
<td>Rapid increases in weight-for-length in the first 6 months of life associated with increased risk of obesity at age 3, predicted higher BMI, adiposity, and elevated systolic blood pressure at age 3(^3,4)</td>
</tr>
</tbody>
</table>

BMI= body mass index.
Early Rapid Weight Gain & Obesity

<table>
<thead>
<tr>
<th>Study</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chomtho, 2008</td>
<td>Weight gain during early infancy is associated with increased fat mass and central fat distribution at 11 years<sup>1</sup></td>
</tr>
<tr>
<td>Dennison, 2006</td>
<td>Rapid weight gain from 0 to 6 months in WIC program predicts obesity at age 4<sup>2</sup></td>
</tr>
<tr>
<td>Wells, 2011</td>
<td>In obese individuals, ages 5-22, postnatal weight gain had the most dominant impact on adiposity and fat distribution<sup>3</sup></td>
</tr>
</tbody>
</table>

WIC= Women, Infants and Children.

Early Rapid Weight Gain May Impact Health Risk

CVD = cardiovascular disease.
Breastfeeding and Obesity

A Small but Significant Effect on Obesity
Breastfed / Formula Fed

- BF versus FF: *early growth differs*
- BF infants experience a greater *neonatal weight loss* and take longer to *regain birth weight* than FF infants

Crossland et al. 2009, Macdonald et al. 2003
Breast-fed: 6.4%
Formula-fed: 3.7%

Weight Loss at 2 Weeks

% Birth weight Lost
First Days of Life

• Composition and volume
 – Breast Day 1 & 2: 21 mL, 100 mL
 – Formula Day 1 & 2: 170 mL, 265 mL

• Maternal supply limits volume

• Does formula need lower calories to compensate for a higher volume of intake?
Infants Adjust Calories After 4-6 weeks

(kcal/kg/day)

Foman, 1974
The Changing Energy Content of Breast Milk

<table>
<thead>
<tr>
<th>Stage</th>
<th>kcal/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colostrum (Day 1-5)</td>
<td>536</td>
</tr>
<tr>
<td>Transition (6-14 d)</td>
<td>577</td>
</tr>
<tr>
<td>Mature (> 14 d)</td>
<td>652</td>
</tr>
<tr>
<td>Infant Formula (Day 1)</td>
<td>676</td>
</tr>
</tbody>
</table>
Infant Formula > Mature Breast Milk

<table>
<thead>
<tr>
<th>Study</th>
<th>Calories/Liter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant Formula</td>
<td>676 kcal/L</td>
</tr>
<tr>
<td>Wojcik et al. 2009</td>
<td>650 kcal/L</td>
</tr>
<tr>
<td>Reilly et al. 2005</td>
<td>639 kcal/L</td>
</tr>
<tr>
<td>Hosoi et al. 2005</td>
<td>642 kcal/L</td>
</tr>
<tr>
<td>Mitoulas et al. 2005</td>
<td>633 kcal/L</td>
</tr>
<tr>
<td>Lucas et al. 1987</td>
<td>616 - 642 kcal/L</td>
</tr>
</tbody>
</table>
The New WHO Standard vs the CDC 2000 curve

Mean weight-for-age Z-scores of healthy breast-fed infants

de Onis M, et al.
Parents are overfeeding
Can We Protect \textit{Non}-Breast Fed Infants Too?

- Breast fed in-hospital 74%
- Exclusively breast fed at 3 mos 31%
- Exclusively breast fed at 6 mos 11%
- Mix breast/bottle 4 months 36%
- Mix breast/bottle 6 months 43%
- Any breast feeding at 12 mos 23%

CDC, 2007
Teach Parents to Listen to Their Babies
Risk of Disease is Layered

- Preconception
- Genetics
- Pregnancy weight gain
- Maternal diet
- Stresses
- Breast vs bottle
- Early rapid weight gain
- Later excess weight gain
- Quality of dietary choices
So

• Adult diseases have fetal origins
• Pre- and post-natal stresses are epigenetic
• Epigenetic adaptations during development may become “maladaptive” later
• A “critical window” exists for early feedings of term, SGA and preterm infants
• **Now we walk a line** between the dangers of under- and over-nutrition for optimal health