Impact of RNA-sequencing analysis in refining diagnosis in pediatric neuro-oncology
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Background and demographics

The Nationwide Children’s Hospital Institute for Genomic Medicine (IGM) translational research protocol
enrolls pediatric patients with high-risk, relapsed, refractory, or difficult to classify tumors. The goal of
this protocol is to refine the patient diagnosis, identify targeted therapeutics relevant to the individual
tumor biology and eliminate unsuitable treatments, and determine eligibility for clinical trials. Findings
are reported and new cases identified for enroliment at weekly multidisciplinary tumor boards,
represented by oncology, surgery, pathology, radiology, radiation oncology, and IGM researchers.
Medically actionable findings are CLIA validated to allow for return of results to the medical record.

To date, 56 unique pediatric patients with central nervous system (CNS) tumors have undergone comprehensive
genomic and transcriptomic analysis (Figure 1A). A majority of sequenced patients are male (60%) and between
the ages of 1-5 and 11-17 years-old (Figure 1B). Multiple tissue sections or time points were sequenced from

some patients, thus a total of 70 unique tissues were evaluated, with 66% of tissues from the primary tumor
(Figure 1C).
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Figure 1: Demographics of the IGM translational research protocol CNS cohort. (A) Primary diagnoses from 56 unique pediatric patients with CNS
tumors who underwent comprehensive genomic and transcriptomic sequencing on our IGM translational cancer protocol. Patient diagnosis is segregated by WHO
classification of CNS tumors. ETMR: embryonal tumor with multilayered rosettes; DNET: dysembryoplastic neuroepithelial tumor. (B) Age and sex at primary tumor
diagnosis. (C) Distribution of tumor occurrence for the sequenced tissue sections.
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Figure 2: Summary cohort findings. (A) Constitutional disorders identified through genomic sequencing. (B) Medically actionable and biologically-relevant novel
fusions identified through RNA-sequencing. (C) Potentially targetable gene overexpression. (D) Cases where genomic and transcriptomic sequencing helped to refine the
patient diagnosis.

Methods

Transcriptomic analysis was performed from 70 tissue sections collected from 56 patients: snap frozen (n=48),
formalin-fixed paraffin-embedded (FFPE) tissue (n=21), or disassociated cells (n=1). When possible, total RNA-
sequencing was performed (n=60); however, when the sample was poor quality or low input, cDNA capture was
utilized to enrich for exonic regions (n=8). RNA was unavailable for 2 patients. We aimed for a total of 280 million
mapped reads per sample, with 4 samples falling below that threshold (average mapped reads: 197,334,031 =+
148,456,775 reads). The analysis pipeline is described in Figure 3.
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Figure 3: IGM translational cancer protocol comprehensive DNA/RNA sequencing analysis pipeline. RNA-sequencing is performed on tumors to aid in
refining the patient diagnosis, identifying therapeutic targets, and confirming the transcriptional effects of constitutional and somatic DNA variation.

Case 1: Refine diagnosis

A 12-year-old was diagnosed with medulloblastoma, suggestive of Group 3 or Group 4, due to presence of
isochromosome 17q. The patient recurred 3 years later. Six years after the initial diagnosis, the patient presented
with a cerebellar lesion “most consistent with recurrent medulloblastoma”, with comment recommending genomic
studies to confirm the morphologic impression.
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Figure 4: Comprehensive sequencing of primary and secondary tumors refined diagnosis from medulloblastoma to secondary glioblastoma.
(A) Patient disease course from primary diagnosis. Changes made due to enroliment on the IGM translational research protocol are shown in red. (B) Morphologic and
immunohistochemical similarities (H&E and synaptophysin) and minor differences (Olig2) between the primary and secondary tumors are shown. (C) Somatic copy humber
variation (CNV) and loss of heterozygosity (LOH) from the primary tumor. (D) Somatic CNV/LOH from the secondary tumor. (E) Rare coding somatic variation in the primary
tumor and secondary tumor showing vastly different genomic profiles. (F) Unsupervised three-dimensional principal component analysis of the top 500 most variable protein
coding genes. VAF: variant allele frequency; MB: medulloblastoma; GBM: glioblastoma.

Case 2: Refine diagnosis

A 10-month-old was diagnosed with a sella/suprasellar tumor, most consistent with a CNS embryonal tumor. No
constitutional or somatic variations or copy number aberrations were noted. The tissue was also sent to an
outside institution for the Infinium MethylationEPIC 850K array, reporting a classification of pineoblastoma group
Al/intracranial retinoblastoma (score=0.99).
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Figure 5: Refinement of a retinoblastoma diagnosis in the absence of constitutional RB1 variation. (A) RB71-SIAH3 fusion with fusion breakpoints at
exon 17 of RB1 and exon 2 of SIAH3. (B) Sashimi plot demonstrating a drastic reduction in spliced read depth following the fusion breakpoint at exon 17 of RB7 in the
described retinoblastoma case and consistent spliced read depth in a pineoblastoma patient with wild-type RB17. (C) Unsupervised three-dimensional principal component
analysis of the top 500 most variable protein-coding genes. (D) Unsupervised hierarchical clustering of the St. Jude-Pediatric Cancer Genome Project retinoblastoma cases
(n=19) and our described case using 79 retina-associated genes.

Case 3: Identify targeted therapy

A 1-year-old with choroid plexus carcinoma was treated with gross total resection and chemoradiation. Genomic
analysis identified a somatic TP53 mutation and 17p loss of heterozygosity. Comprehensive transcriptomic
analysis revealed overexpression of multiple pathways (mTOR, FGF, and PDGF signaling) consistent with other
IGM choroid plexus carcinoma cases and a 2017 case report (Cornelius et al. 2017 Front. Pharmacol.).
Treatment on sunitinib (PDGF inhibitor), everolimus (mTOR inhibitor), and thalidomide (FGF inhibitor) was
initiated.
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Figure 6: Transcriptomic analysis identifies therapeutically-relevant targets in a pediatric choroid plexus carcinoma patient. (A) Manhattan
plot visualizing genome-wide differential expression relative to the UCSC Treehouse nervous system cohort (n=434). Outliers are shown as a blue dot. Outliers that are
targetable, as determined by DGldb, are shown as a red dot. (B) Distribution of DESeq2 normalized counts for FGFR2 within the IGM translational research protocol
cohort. (C) Same as (B) but for MTOR. (D) Boxplots showing the distribution of log2(TPM+1) values for FGFR2 among varying cohorts. The described case is shown
as a red line. (E) Same as (D) but for MTOR. (F) Overexpression of the PDGF signaling pathway, shown by Ingenuity Pathway Analysis.
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