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Supplemental figure 1. The TCA cycle allocates carbon input from glucose 
and glutamine to support T cell growth and proliferation. 
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Supplemental figure 1. The TCA cycle allocates carbon input from glucose and glutamine to 

support T cell growth and proliferation. 

(A) The experimental procedure of isotope 13C5-Glutamine and 13C6-Glucose labeling and 

metabolite quantification by GC-MS. (B-C) Diagram of putative catabolic routes of 13C5- 

Glutamine (B) or 13C6-Glucose (C) in T cells (left panel), quantification results were present in the 

right panel, numbers in the X-axis represent indicated time points, bar with different colors 

represent those of 13C atoms in given metabolites, numbers in the Y-axis represent the levels of 

the metabolites (nmol). n=3, one experiment, bar graphs, mean ± SEM. 
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Supplemental figure 2. Complex II is required for T cell growth and 
proliferation. 
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Supplemental figure 2. Complex II is required for T cell growth and proliferation. 
 
(A-D) WT CD4+ T cells were activated with indicated treatments (atpenin A5 (A5, 100nM), 

diacetoxymethyl malonate (NV161,100μM), dimethyl-itaconate (DI, 0.5mM), or 4-octyl-itaconate 

(4OI, 500μM)) for 72 hrs, cell viability was assessed by 7AAD uptake (A, B), cell number was 

calculated by a cell counter (C), cell proliferation was determined by CFSE dilution (D). n=3, data 

are representative of 3 independent experiments, ***p < 0.001, one-way ANOVA. T cells were 

activated by the plate-bound anti-CD3/CD28 antibodies. 



n.s. 

IL-17+ 
n.s. 

FoxP3+ 

n.s. 

CD25 
*** 

n.s. 

n.s. 

*** 

%
M

ax
 

C
el

l n
um

be
r(*

10
5 ) 

%
M

ax
 

Ce
ll 

pe
rc

en
ta

ge
(%

)  

%
 o

f  p
os

iti
ve

 c
el

ls
 in

 C
D

4+ 
T 

ce
lls

 

 
WT 
KO 

A Thymus Spleen Peripheral LN 
 
Thymus Spleen Peripheral LN 

 
 
 
 
 
 
 
 

CD4 

15 20 

10 15 
10 

5 5 

0 0 
CD4+ CD8+ 

40 

30 
20 

10 
0 

CD4+ CD8+ 

WT 
KO 

 
 
 
 

CD4+ CD8+ 

B   Spleen  Peripheral LN IFN-γ+ 
WT KO WT KO 5.0 2.50 15 WT 
2.9% 2.7% 1.0% 0.9%  

 
2.5 

KO 
10 

1.25 
5 

1.1% 1.2% 1.1% 1.5%  0.0 
2 

 
0.00 

2 

 
0 

15 n.s. 
 

10 
9.5% 12.6% 12.6% 13.7% 1 1 

5 
 

 
CD4 

C 
8 

6 

4 

2 

0 

0 
 

WT D 
KO 

 
 
 
 
 
24hr 48hr 72hr 

0 
 
 

1.2 
 

0.8 
 

0.4 
 

0.0 

0 
 
 

1.2 WT 
KO 

0.8 
 

0.4 
 

0.0 

E 
 

 
FSC 

 
G 

100 

 
1.2 
 
0.8 
 
0.4 
 
0.0 

FSC 
  * WT 

KO 
 
 
 
 
 
 
WT 
KO 

F 
 

OPP 
 
H 

100 

 
1.2 
 
 
0.6 
 
 
0.0 

OPP 
 **  

WT 
KO 

 
 
 
 
 
 

WT 
KO 

 

50 50 
 
 

0 
Pre 

 
 

Post 

 
0 

Pre Post 
 

Supplemental figure 3. Complex II/SDHB is required for T cell development 
and activation. 
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Supplemental figure 3. Complex II/SDHB is required for T cell development and activation. 

(A-B) Distribution of indicated T cell subsets in the thymus, spleen, and peripheral lymph node 

(LN) were determined by cell surface and intracellular markers by flow cytometry. n=3, data are 

representative of 3 independent experiments, n.s., not significant, **p < 0.01, ***p < 0.001, two- 

way ANOVA, student’s t test. (C) Cell numbers of the indicated CD4+ T cells were measured by 

a cell counter, n=3, data are representative of 3 independent experiments, *p < 0.05, **p < 0.01, 

***p < 0.001, one-way ANOVA. (D-F) Cell surface markers (CD69 and CD25), size (FSC), 

protein contents (OPP) of the indicated cells (24 h after activation) were determined by flow 

cytometry, n=3, data are representative of 3 independent experiments, *p < 0.05, **p < 0.01, ***p 

< 0.001, student’s t test. T cells (C-F) were activated by the plate-bound anti-CD3/CD28 

antibodies. (G-H) CD4+ T cell ratios of in vivo competitive proliferation (G) or antigen-specific 

competitive proliferation (H) before (Pre) and after (Post) adoptive transfer were determined by 

surface staining of isogenic markers, n=5, data are representative of 3 independent experiments, 

***p < 0.001, two-way ANOVA. Bar graphs, mean ± SEM. 
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Supplementary figure 4. Gating strategies applied in homeostatic (A) or 
antigen-specific (B) proliferation assays (Related to Figure. 1G-H). 
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Supplementary figure 4. Gating strategies applied in homeostatic or antigen-specific 

proliferation assays (Related to Figure 1. G-H). 

(A) Lymph nodes were harvested from lymphopenic host mice (Rag-/-), and processed into single- 

cell suspensions. The donor T cells were gated from TCRβ+CD4+ cells and parsed by Thy1.1(WT) 

and Thy1.2(SDHB cKO), cell proliferation was determined by CFSE dilution, related to figure 1G. 

(B) Lymph nodes were harvested from CD45.1+ host mice, and processed into single-cell 

suspensions. The donor T cells were gated from CD45.2+CD4+ cells and parsed by Thy1.1(WT) 

and Thy1.2(SDHB cKO), cell proliferation was determined by CFSE dilution, related to figure 1H. 
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Supplemental figure 5. SDHB deficiency induces DNA damage and moderately 
increases ROS production. 
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Supplemental figure 5. SDHB deficiency induces DNA damage and moderately increases 

ROS production. 

(A-B) CD4+ T cells were activated for 24 hrs with indicated treatment, DNA damage was 

determined by staining phosphor-Histone H2A.X(Ser139) by flow cytometry, n=3, data are 

representative of 2 independent experiments, *p < 0.05, ***p < 0.001, student’s t test, one-way 

ANOVA. (C-E) CD4+ T cells were activated for 72 hrs with indicated treatments, cell viability 

was determined by 7AAD uptake (C-D), cell proliferation was determined by CFSE dilution (E), 

n=3, data are representative of 2 independent experiments, *p < 0.05, ***p < 0.001, one-way 

ANOVA. (F) CD4+ T cells were activated for 24 hrs, intracellular ROS and mitochondrial ROS 

were measured by the H2DCFDA staining or MitoSOX™ Red staining by flow cytometry, n.s., 

not significant, ***p < 0.001, student’s t test. (G-I) CD4+ T cells were activated for 72 hrs with 

indicated treatments. Cell viability was determined by 7AAD uptake (G-H), cell proliferation was 

determined by CFSE dilution (I), n=3, data are representative of 2 independent experiments, n.s., 

not significant, ***p < 0.001, one-way ANOVA. Bar graphs, mean ± SEM. T cells were activated 

by the plate-bound anti-CD3/CD28 antibodies. 
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Supplemental figure 6. SDHD deficiency phenocopies SDHB deficiency in T 
cell. 
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Supplemental figure 6. SDHD deficiency phenocopies SDHB deficiency in T cell. 
 
(A) SDHD mRNA levels of the indicated T cells were determined by qPCR (n=3), ***p < 0.001, 

student’s t test. (B) Distribution of indicated T cell subsets in the thymus, spleen, and peripheral 

lymph node (LN) were determined by cell surface markers by flow cytometry, n=3, data are 

representative of 3 independent experiments, n.s., not significant, *p < 0.05, **p < 0.01, ***p < 

0.001, one-way ANOVA. (C-F) CD4+ T cells were activated by the plate-bound anti-CD3/CD28 

antibodies for 72 hrs with indicated treatment, cell proliferation was determined by CFSE dilution 

(C), cell viability was determined by 7AAD uptake (D-E), and cell number was measured by a 

cell counter (F). n=3, data are representative of 3 independent experiments, *p < 0.05, **p < 0.01, 

***p < 0.001, one-way ANOVA. Bar graphs, mean ± SEM. 
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Supplemental figure 7. SDHB or SDHD deficiency suppresses cell proliferation 
and survival during differentiation. 
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Supplemental figure 7. SDHB or SDHD deficiency suppresses cell proliferation and survival 

during differentiation. 

(A-D) CD4+ T cells were polarized under TH1 (A and B) and TH17 (C and D) differentiation 

conditions, cell proliferation was determined by CFSE dilution (A and C), cell viability was 

determined by 7AAD uptake (B and D), n=3, data are representative of 3 independent 

experiments, ***p < 0.001, one-way ANOVA. (E) Schematic view of carbon input and output 

through the TCA cycle. Bar graphs, mean ± SEM. 
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Supplemental figure 8. Increasing the succinate/α-KG ratio promotes T cell 
inflammation. 
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Supplemental figure 8. Increasing the succinate/α-KG ratio promotes T cell inflammation. 
 
(A) Indicated cytokines were measured by the LEGEND plex™ kits by flow cytometry, n=4 from 

one experiment, ***p < 0.001, Student’s t test. (B) Metabolites of the indicated T cells were 

extracted and analyzed using IC-UHR-FTMS, n=3 from one experiment, **p < 0.01, ***p < 0.001, 

student’s t test. (C) The succinate and α-KG levels from naïve T cells with indicated treatment and 

genotypes were measured using colorimetric assay kits, n=3 from one experiment, *p<0.05, 

***p<0.001, one-way ANOVA. (D) CD4 T cells were activated for 36 hrs with or without 10mM 

α-KG, mRNA levels of indicated genes were measured by qPCR, n=3, data are representative of 

3 independent experiments, *p < 0.05, ***p < 0.001, one-way ANOVA. (E) Metabolites of the 

indicated T cells were extracted and analyzed using IC-UHR-FTMS, n=3 from one experiment, 

*p<0.05, **p<0.01, one-way ANOVA. Bar graphs, mean ± SEM. CD4+ T cells were activated by 

the plate-bound anti-CD3/CD28 antibodies (A, B and D) or polarized toward the indicated T cell 

lineages (E) 
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Supplemental figure 9. Acute deletion of SDHB enhances TH1 and TH17 
differentiation. 
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Supplemental figure 9. Acute deletion of SDHB enhances TH1 and TH17 differentiation. 
 
(A-E) CD4+T cells were polarized under TH1 and TH17 differentiation conditions with indicated 

treatment (1µM L-2HG, 2mM α-KG, 600nM 4OHT) for 72 hrs. The indicated proteins were 

quantified by intracellular staining. Cell proliferation was determined by CFSE staining. n=3, data 

are representative of 2 independent experiments, *p<0.05, **p<0.01, ***p<0.001, student’s t-test, 

one-way ANOVA, two-way ANOVA. Bar graphs, mean ± SEM. 
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Supplemental figure 10. HIF1-𝜶	is dispensable for pro-inflammatory gene 
signature caused by SDHB deficiency. 
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Supplemental figure 10. HIF1-𝜶	 is dispensable for pro-inflammatory gene signature caused 

by SDHB deficiency. 

(A) mRNA levels of indicated genes were measured by the qPCR (n=3), **p<0.01, ***p<0.001, 

student’s t test. (B) Distribution of indicated T cell subsets in the thymus, spleen, and peripheral 

lymph node (LN) were determined by cell surface markers by flow cytometry, n=3, data are 

representative of 3 independent experiments, n.s., not significant, **p < 0.01, ***p < 0.001, two- 

way ANOVA. (C-G) The indicated CD4+ T cells were activated by the plate-bound anti- 

CD3/CD28 antibodies for the indicated times. Cell proliferation was determined by CFSE dilution 

(C), cell number was determined by the cell counter (D), cell viability was determined by 7AAD 

uptake (E, F), mRNA levels of indicated genes were determined by qPCR (G), n=3, data are 

representative of 3 independent experiments, n.s., not significant, **p < 0.01, ***p < 0.001, one- 

way ANOVA. 
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Supplemental figure 11. HIF1-𝜶	is dispensable for pro-inflammatory gene 
signature caused by succinate accumulation. 
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Supplemental figure 11. HIF1-𝜶	 is dispensable for pro-inflammatory gene signature caused 

by succinate accumulation. 

(A-B) CD4+ T cells were polarized toward TH1 (A) and TH17 (B) lineages with indicated treatment 

(25 µM NV118) for 72 hrs. The indicated proteins were quantified by intracellular staining by 

flow cytometry. Cell proliferation was determined by CFSE staining, n=3, data are representative 

of 2 independent experiments, **p < 0.01, ***p < 0.001, one-way ANOVA. Bar graphs, mean ± 

SEM. 
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Supplemental figure 12. Succinate accumulation impacts T cell epigenome. 
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Supplemental figure 12. Succinate accumulation impacts T cell epigenome. 
 
(A) Indicated metabolites in naive T cells were determined by GC-MS, n=3 from one experiment, 

n.s., not significant, ***p<0.001, student’s t test. (B-C) DNA methylation levels in naive T cells 

with indicated genotypes or treatment were determined by 5-mc staining by flow cytometry. (D- 

F) Indicated histone methylation levels in naive T cells with indicated genotypes or treatment were 

determined by intracellular staining by flow cytometry (gray line represented isotope ctrl, black 

line represented total H3, blue line represented H3K9me3, red line represented H3K4me3, green 

line represented H3K27me3, solid line represented WT, dashed line represented KO or NV118 

treatment), n=3, data are representative of 3 independent experiments, *p<0.05, **p<0.01, 

***p<0.001, student’s t test. (G) Differential chromatin accessibility was measured by ATAC-seq 

in naïve CD4 T cells between indicated genotypes (n = 3 replicates for each genotype), identifying 

5,086 sites with accessibility gain and 346 sites with accessibility loss in SDHB cKO T cells. (H) 

Motif analysis was performed in differential ATAC-seq peaks (WT vs. SDHB cKO naïve CD4 T 

cells), identifying motif enrichment for transcription factors involved in T cell activation and 

inflammation. 
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Supplemental figure 13. Changing the succinate/α-KG ratio affects 
Prdm1/Blimp-1 expression during T cell differentiation. 
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Supplemental figure 13. Changing the succinate/α-KG ratio affects Prdm1/Blimp-1 

expression during T cell differentiation. 

(A-I) CD4+T cells were polarized toward TH1 (A, D, E and H) and TH17 (B, F, G and I) lineages 

with indicated treatment (2mM α-KG, 50µM NV161, 600nM 4OHT) for 72 hrs. The indicated 

proteins were quantified by intracellular staining by flow cytometry. Cell proliferation was 

determined by CFSE staining (C). n=3, data are representative of 3 independent experiments, 

*p<0.05, **p<0.01, ***p<0.001, student’s t-test, two-way ANOVA. Bar graphs, mean ± SEM. 
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Supplemental figure 14. Changing the succinate/α-KG ratio affects 
Prdm1/Blimp-1 expression through modulating the level of H3K4me3. 
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Supplemental figure 14. Changing the succinate/α-KG ratio affects Prdm1/Blimp1 

expression through modulating the level of H3K4me3. 

(A) The enrichment of H3K4me3 at the promoter of Prdm1 was measured by the ChIP-qPCR, n=4 

replicates for each genotype, *p<0.05, student’s t-test. (B) The diagram of KDM5-C70 and 

MM102 on regulating H3K4 trimethylation. (C-F) CD4+ T cells were maintained in naïve 

condition with 25µM MM102 for 48 hrs or 10µM KDM5-C70 for 72 hrs, H3K4me3 levels were 

measured by intracellular staining by flow cytometry (C and E); the cells were then activated by 

the plate-bound anti-CD3/CD28 antibodies for 36 hrs, and mRNA levels of Prdm1 were measured 

by qPCR (D and F), n=3, data are representative of 3 independent experiments,  **p<0.01, 

***p<0.001, student’s t test, one-way ANOVA. (G-J) CD4+T cells were polarized toward TH1 (G 

and H) and TH17 (I and J) lineages with 5µM KDM5-C70 for 72 hrs. The indicated proteins were 

quantified by intracellular staining by flow cytometry. Cell proliferation was determined by CFSE 

staining. n=3, data are representative of 3 independent experiments, ***p<0.001, student’s t-test. 

Bar graphs, mean ± SEM. 
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Supplemental figure 15. Changing the succinate/α-KG ratio regulates 
Prdm1/Blimp-1 expression through an epigenetic mechanism. 
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Supplemental figure 15. Changing the succinate/α-KG ratio regulates Prdm1/Blimp-1 

expression through an epigenetic mechanism. 

(A-H) CD4+T cells were polarized toward TH1 (A-D) and TH17 (E-H) lineages with indicated 

treatment (10µM MM102, 600nM 4OHT) for 72 hrs. The indicated proteins were quantified by 

intracellular staining by flow cytometry. Cell proliferation was determined by CFSE staining. n=3, 

data are representative of 3 independent experiments, ***p<0.001, two-way ANOVA. Bar graphs, 

mean ± SEM.  



 Supplemental Table 1. Cell culture-related antibodies, cytokines, inhibitors, chemicals 
 

  

Name Cat# Vendor 
InVivoMAb anti-mouse CD3 BE0001-1 BioXcell 
InVivoMAb anti-mouse CD28  BE0015-1 BioXcell 
InVivoMAb anti-mouse IFNγ  BE0055 BioXcell 
InVivoMAb anti-mouse IL-4  BE0045 BioXcell 
InVivoMAb anti-mouse IL-2  BE0043 BioXcell 
Recombinant Murine IL-12 p70 210-12 Peprotech 
Recombinant Mouse IL-2  212-12  Peprotech 
Recombinant Murine IL-7 217-17 Peprotech 
Recombinant Murine IL-6 216-16 Peprotech 
Recombinant Human TGF-β1 100-21C Peprotech 
Adenosine AC164040050 Thermo Fish Scientific 
Uridine U3003 Sigma-Aldrich 
Inosine I4125 Sigma-Aldrich 
Cytidine C4654 Sigma-Aldrich 
Guanosine G6264 Sigma-Aldrich 
Thymidine  T1895 Sigma-Aldrich 
Q-VD-OPH(QvD) 1135695-98-5 BOC science 
Atpenin A5 119509-24-9 Cayman 
polyketides NV161 Cpd ID 01-161-S2; 

Vial ID BION10476 
Isomerase therapeutics 
Ltd. Cambridge 

polyketides NV118 Cpd ID 01-118-s3; Vial 
ID BION10474  

Isomerase therapeutics 
Ltd. Cambridge 

Dimethyl itaconate 592498 Sigma-Aldrich 
4-octyl-itaconate 3133-16-2 Sigma-Aldrich 
Dimethyl 2-oxoglutarate (Dim α-KG) 349631 Sigma-Aldrich 
(Z)-4-Hydroxytamoxifen(4OHT) 68047-06-3 Sigma-Aldrich 
GDH1 Inhibitor, R162 - Calbiochem 5380980001 Sigma-Aldrich 
NAC A7250 Sigma-Aldrich 
Glutathione reduced ethyl ester (GSH EE) G1404 Sigma-Aldrich 
MM102 S7265 Selleckchem 
KDM5-C70 HY-120400 MedChemExpress 
(2S)-2-Hydroxyglutaric Acid Octyl Ester 
Sodium Salt 

H942596 Toronto Research 
Chemicals 

 



Supplemental Table 2. Cell staining antibodies and dyes  

 
  

Name Cat# Vendor 
Pacific Blue™ anti-mouse CD4 Antibody 100428 BioLegend 
APC anti-mouse CD4 Antibody 100516 BioLegend 
PE/Cyanine7 anti-mouse CD4 Antibody 100422 BioLegend 
Percp anti-mouse CD4 Antibody 100432 BioLegend 
APC/Cyanine7 anti-mouse CD8a Antibody 100714 BioLegend 
APC anti-mouse TCR β chain Antibody 109211 BioLegend 
PE/Cyanine7 anti-mouse CD90.1 (Thy-1.1) Antibody 202518 BioLegend 
APC/Cyanine7 anti-mouse CD90.2 Antibody 105328 BioLegend 
APC anti-mouse CD90.2 (Thy-1.2) Antibody 140311 BioLegend 
PE/Cyanine7 anti-mouse CD45.1 Antibody 110730 BioLegend 
APC/Cyanine7 anti-mouse CD45.2 Antibody 109824 BioLegend 
FITC anti-mouse CD3 Antibody 100204 BioLegend 
PE-Cy™7 Hamster Anti-Mouse CD69  552879 BD Pharmingen™ 
CD25 Monoclonal Antibody (PC61.5), PE 12-0251 eBioscience™ 
APC anti-mouse IFN-γ Antibody 505810 BioLegend 
PE/Cyanine7 anti-mouse IFN-γ Antibody 505826 BioLegend 
APC anti-mouse IL-17A Antibody 506916 BioLegend 
PE/Cyanine7 anti-mouse IL-17A Antibody 506922 BioLegend 
Alexa Fluor® 488 Donkey anti-rabbit IgG Antibody 406416 BioLegend 
Alexa Fluor® 647 Donkey anti-rabbit IgG Antibody 406414 BioLegend 
PE/Cyanine7 anti-H2A.X Phospho (Ser139) Antibody 613419 BioLegend 
Alexa Fluor® 647 anti-mouse FOXP3 Antibody 126407 BioLegend 
Anti-5-methylcytosine (5-mC) Antibody (APC) AC16-0073-03 Abcore 
Blimp-1 Monoclonal Antibody (5E7), Alexa Fluor 488 53-9850-82 eBioscience™ 
Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb  9751 Cell Signaling 
Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb  13969 Cell Signaling 
Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb 9733 Cell Signaling 
Histone H3 (D1H2) XP® Rabbit mAb 4499 Cell Signaling 
Pyronin Y 92-32-0 Sigma-Aldrich 
APC anti-BrdU Antibody 364114 BioLegend 
MitoSOX™ Red Mitochondrial Superoxide Indicator M36008 Invitrogen™ 
Carboxy-H2DFFDA C13293 Invitrogen™ 
7-AAD Viability Staining Solution 420404 BioLegend 
 



Supplemental Table 3. Immunoblot antibodies 
 

 
  

Name Cat# Vendor 
SDHB Antibody (FL-280) SC-25851 Santa Cruz 
anti-actin SC-47778 Santa Cruz 
 



Supplemental Table 4. RT-qPCR primers 
 

 
 
 
 
 
 

Gene primer sequences forward primer sequences reverse 
Sdhb ATTTACCGATGGGACCCAGAC GTCCGCACTTATTCAGATCCAC 
Sdhd TGGTCAGACCCGCTTATGTG GGTCCAGTGGAGAGATGCAG 
Ifng ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC 
Il17a TTTAACTCCCTTGGCGCAAAA CTTTCCCTCCGCATTGACAC 
Il17f TGCTACTGTTGATGTTGGGAC AATGCCCTGGTTTTGGTTGAA 
Il22 ATGAGTTTTTCCCTTATGGGGAC GCTGGAAGTTGGACACCTCAA 
Hif1a AGCTTCTGTTATGAGGCTCACC TGACTTGATGTTCATCGTCCTC 
Tubulin TTCTGGTGCTTGTCTCACTGA CAGTATGTTCGGCTTCCCATTC 
Gata2 CACCCCGCCGTATTGAATG CCTGCGAGTCGAGATGGTTG 
Runx2 AACGATCTGAGATTTGTGGGC CCTGCGTGGGATTTCTTGGTT 
Tbx6 ATGTACCATCCACGAGAGTTGT GGTAGCGGTAACCCTCTGTC 
Zeb2 ATTGCACATCAGACTTTGAGGAA ATAATGGCCGTGTCGCTTCG 
Kif4 AGGTGAAGGGGATTCCCGTAA AAACACGCCTTTTATGAGTGGA 
Spib AGGAGTCTTCTACGACCTGGA GAAGGCTTCATAGGGAGCGAT 
Ebf1 GCATCCAACGGAGTGGAAG GATTTCCGCAGGTTAGAAGGC 
Mef2c GTCAGTTGGGAGCTTGCACTA CGGTCTCTAGGAGGAGAAACA 
Bhlhe41 TGTGTAAACCCAAAAGGAGCTT TGTTCGGGCAGTAAATCTTTCAG 
Rorc CGCGGAGCAGACACACTTA CCCTGGACCTCTGTTTTGGC 
Prdm1 TTCTCTTGGAAAAACGTGTGGG GGAGCCGGAGCTAGACTTG 
Irf4 TCCGACAGTGGTTGATCGAC CCTCACGATTGTAGTCCTGCTT 
Stat3 CAATACCATTGACCTGCCGAT GAGCGACTCAAACTGCCCT 
Batf CTGGCAAACAGGACTCATCTG GGGTGTCGGCTTTCTGTGTC 
Bach1 TGGTGAGAGTGCGGTATTTGC GTCAGTCTGGCCTACGATTCT 
 



 
Supplemental Table 5. ChIP-qPCR primers 
 

 
 

 

 

Gene primer sequences forward primer sequences reverse 
Prdm1 TCTGGTTCCTTACCAAGGTCG GTGGACTGGGTGGACATGAG 
 



 


