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Abstract 
This paper describes the software package KELVIN, which supports the PPL framework for the 

measurement of statistical evidence in human (or more generally, diploid) genetic studies. In 

terms of scope, KELVIN supports two-point (trait-marker or marker-marker) and multipoint 

linkage analysis, based on either sex-averaged or sex-specific genetic maps, with an option to 

allow for imprinting; trait-marker linkage disequilibrium, or association analysis, in case-control 

data, trio data, and/or multiplex family data, with options for joint linkage and trait-marker 

linkage disequlibrium (LD) or conditional LD given linkage; dichotomous trait, quantitative trait 

and quantitative trait threshold models; and certain types of gene-gene interactions and covariate 

effects. Features and data (pedigree) structures can be freely mixed and matched within analyses. 

The statistical framework is specifically tailored to accumulate evidence in a mathematically 

rigorous way across multiple data sets or data subsets while allowing for multiple sources of 

heterogeneity, and KELVIN itself utilizes sophisticated software engineering to provide a 

powerful and robust platform for studying the genetics of complex disorders.  
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Introduction 

This paper describes the statistical genetic software package KELVIN. KELVIN is a relatively 

comprehensive package for linkage and/or association analysis, based on familiar forms of 

genetic likelihoods (with some unique extensions of these likelihoods, see below). Its options 

include: two-point (trait-marker or marker-marker) and multipoint linkage analysis, based on 

either sex-averaged or sex-specific genetic maps (covering the autosomes, X, and the 

pseudoautosomal region of X), with an option to allow for imprinting; trait-marker linkage 

disequilibrium (LD), or association analysis, in case-control data, trio data, and/or multiplex 

family data, with options for joint linkage and LD or conditional LD given linkage; dichotomous 

trait (DT), quantitative trait (QT) and QT threshold (QTT) models; and certain types of gene-

gene interactions and covariate effects.  

The underlying algorithm is Elston-Stewart based [1], permitting analysis of fairly large 

pedigrees including loops; multipoint analyses [2] are done automatically by walking down each 

chromosome using a user-specified number of markers to perform the calculations at each 

position [3]. In-house implementations currently allow the use of Lander-Green [4] or MCMC 

algorithms for handling multipoint marker data; these options are slated for future incorporation 

into KELVIN itself. KELVIN accepts mixtures of different pedigree structure (cases/controls, trios, 

sib-pairs, nuclear families, extended pedigrees), and analysis options can be easily combined 

with one another. A custom graphing program, KELVIZ, facilitates visualization of KELVIN 

output. Sophisticated software engineering, as described below, makes possible some types of 

calculations that cannot be done by other programs. A rigorous protocol for semi-automated 

testing of all revisions to the code is employed. 
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KELVIN has been developed within a broader philosophical program of research focused on 

how to measure statistical evidence, and in particular, how to accumulate evidence as data are 

acquired [5, 6].  As a result, KELVIN’s calculations are neither frequentist nor Bayesian nor 

strictly “evidentialist” [7].  Rather, they require the user to become comfortable with a novel 

framework, although arguably a framework that is in many ways simpler to interpret than the 

alternatives.  

We begin, therefore, with (1) a brief historical description of KELVIN’s original purpose and 

form.  We then (2) give an overview of the full set of statistical models currently available to the 

user. In section (3), we describe the underlying computational architecture used to accomplish 

the calculations. Each of the KELVIN features described in this paper has been the subject of one 

or more previous peer-reviewed publications. Here we forego mathematical details and give 

instead a general overview, with citations to the appropriate source materials.  We return to 

philosophical matters in the Discussion. 

 

(1) Historical Development of KELVIN  

1.1 Original Motivation Development of KELVIN was originally motivated by one simple 

question: When performing linkage analysis, why not get what we really want? Vieland [8] 

argued that what we really want to know is the probability of a clinically relevant gene at any 

given genomic position g based on the available data D, or in brief, Pg(linkage | D). But what we 

usually measure is instead Pg(D | no linkage), which is at best only indirectly related to the 

quantity of true interest and can under some circumstances actually be misleading (see, e.g., [7]).   

In 1959, Smith [9] proposed using Bayes’ theorem to directly compute what we really wanted 

to know, Pg(linkage | D). His proposal was of limited practical value at the time, however, for 
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purely computational reasons. But by the 1990s computational difficulty no longer seemed a 

sufficient reason to forego calculating a quantity of interest. Thus, as argued in Vieland [8], all 

that seemed to stand between us and getting what we really wanted was to overcome our 

squeamishness at the use of the mathematical device of assigning prior distributions to 

parameters. In view of the subsequent acceptance of Bayesian methods in human genetics, it 

seems somewhat quaint to have had to belabor the argument at all.  

In any case, that was when we began to consider a statistic we called the PPL, which stood for 

“posterior probability of linkage.”  As originally proposed, the PPL was simply an application of 

Bayes' theorem to genetic linkage analysis, and as such it looked quite Bayesian in spirit. 

Vieland [8] was careful to distinguish between accepting the PPL as a valid measure of linkage 

and adopting Bayesianism as a broader philosophical program of statistical investigation.  

However, it is only more recently that we have come to view the PPL as a truly non-Bayesian 

measure. We return to this topic in the Discussion.  

1.2 The original PPL Vieland [8] proposed a form of the PPL based on the ordinary LOD 

score, calculated as was usual at the time under a given trait model.  Bayes’ theorem tells us that  
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where L(θ | D) is the likelihood for the recombination fraction θ, f(θ|θ< ½)  is the prior 

probability distribution for θ under the hypothesis of “linkage,” and π = P(linkage) = P(θ < ½). 

Dividing each term through by L(θ = ½ | D), we can rewrite Eq 1 as 
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This formulation makes clear that any computer program that can compute LOD scores can be 

used to calculate the PPL using Eq 2.  It also establishes that the PPL is intrinsically 

ascertainment corrected: replacing the likelihood with the (exponentiated) LOD means that we 

are implicitly computing the likelihood for the marker data given the trait data [10, 11], for a 

form of “ascertainment assumption free” calculation [12] (see also [13, 14]).  

In terms of the prior distribution for θ, we initially tried various approaches, including a β 

prior and an empirical Bayes approach [15]. However, in the end we settled on a simple step 

function, with uniform prior within steps but a higher “weight” on small values of θ; specifically, 

we set 95% of the prior for θ < ½ to be uniform over the interval [0,..,0.05) and the remaining 

5% to be uniform over [0.05,..,0.50). This prior proved to have excellent behavior under both 

“linkage” and “no linkage.”  We set π = 2% based on earlier calculation [16] of the probability 

for two random loci to be linked. This is conservative for multilocus disorders, since the prior 

probability of one of several genes being within linkage distance of a given genomic position is 

higher than 2%. 

As argued in [8], one clear advantage of the PPL as a linkage statistic is simplicity of 

interpretation. A PPL of, say, 40% simply means that there is a 40% probability of linkage to the 

given marker or location, for the clinical trait under study and based on the available data. This 

number is readily interpreted just like any other probability – say, the probability of rain or of a 

successful medical intervention – and, in Smith's [9] words, it "does not need to be hedged about 

with qualifications, unlike a significance level." Of course this does not answer the question of 

whether 40% represents strong, or "strong enough," evidence for linkage. Whether we act on this 

evidence and in what way (say, with molecular follow up) depends on many factors, including 
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availability of resources and alternative uses for those resources. The PPL is one piece of 

information available to inform such decisions, but it is not itself a decision making procedure.  

By the same token, PPLs are not interpreted in terms of their associated Type 1 error rates 

(since there is no decision being made, there is no associated error probability). Thus the familiar 

paradigm of evaluating methods by assessing power for fixed-size tests is generally not 

applicable to statistics in the PPL framework. However, the methods development papers cited in 

what follows show various types of comparisons with familiar methods. The interested reader is 

also referred to [17-20] for some recent examples of the "power" of the PPL framework in a 

more general sense.  

 1.3 Sequential Updating It was known that including the admixture parameter α [21] in the 

linkage likelihood was useful for handling heterogeneity within any given data set (see, e.g., [22] 

for an early application; see also [23]), and the PPL could be easily reformulated in terms of the 

heterogeneity LOD (HLOD [24]). But in the presence of appreciable heterogeneity, the 

proportional representation of any given genetic form of disease can vary substantially from data 

set to data set as a function of multiple factors, including differences in ascertainment and 

clinical procedures, differences in ancestries across catchment areas, and simple sampling 

fluctuations. This fact undermines the use of independent replication to sort true from false 

findings [25], but suggests another approach to utilizing multiple data sets based on the 

mathematically rigorous accumulation of evidence across data sets, when the data sets can be 

reasonably expected to differ from one another in important ways.  

We again simply use Bayes’ theorem for this. We define the Bayes Ratio (BR) as
	
  

BR(! |D) = 10HLOD" f (! ) f (# ) d# .
	
   	
   	
   	
   	
   	
   	
   Eq	
  3	
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(The BR is a function of any parameters not being integrated out, thus in Eq 3 it is a function of 

θ as indicated by the notation. In general we simply say “BR,” annotating which parameters are 

not integrated out only as necessary to avoid ambiguity. The BR is essentially an integrated 

(conditional) likelihood, but the integration here is over a ratio of likelihoods as a unit, as above; 

see also [26].) We assume here and throughout that the prior f(α) is uniform (0,..,1). 

Appropriately substituting BR(θ|D) into Eq 2, we obtain a PPL for data D based on the 

HLOD. (See [27] for theoretical properties of this form of the PPL.) Generalizing to m data sets, 

and allowing α to vary across data sets, the BR becomes 

BR(! | D1, ...,Dm ) = BR(! | Di )
i=1

m

" ,
	
   	
   	
   	
   Eq	
  4

 

and the PPL is calculated as 
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Note that the order in which the data sets are considered is irrelevant [28].  

This then gives us a recipe for calculating what we really want to calculate across multiple 

data sets: (i) start with any program that calculates HLODs, and some numerical integration 

method;  (ii) use Eq 3 to calculate the marginal BR(θ) for each available data set (integrating out 

α); (iii) multiply BRs across data sets using Eq 4; (iv) use Bayes’ theorem to transform the 

results back onto the probability scale using Eq 5. Note that once the BRs have been calculated 

for a given set of data, there is no need to reanalyze the data in order to measure the evidence 

considered in aggregate with another set of data. This also permits investigators to perform joint 

analyses without ever having to share data, since all that is required to obtain the PPL across data 

sets is an output file with the BR for each data set.  
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The process of multiplying the BR’s across data sets is known as sequential updating. Here α 

is being treated as a nuisance parameter, integrated over separately for each data set and 

therefore allowed to vary freely across data sets. We have showed that this simple procedure for 

accumulating evidence across heterogeneous sets of genetic data has superior statistical 

properties compared to several alternatives [28-30]. This simple technique for accumulating 

evidence across data sets, while allowing nuisance parameters to vary across data sets, lies at the 

heart of all of the PPL's underlying methodology. 

Sequential updating can be used to accumulate evidence across data collected at different 

sites, by different investigators, or at different time periods. It can also be used to accumulate 

evidence within data sets across data subsets, say, divided by ancestry or other demographic 

features or by clinical features. It is beneficial even when the basis for subdivision is not a 

perfect classifier of homogeneous subsets, and it is only mildly detrimental when data are 

(inadvertently) subdivided on random (genetically irrelevant) variables [31, 32].  However, in the 

presence of relatively homogeneous genetic effects across data sets, “pooling” families together 

for a single, combined analysis is always more powerful than sequentially updating across 

families. See [31] for practical considerations when classifying data subsets for purposes of 

sequential updating.  

There is one other important distinguishing feature of the sequentially updated PPL: it 

accumulates evidence both for linkage and also against linkage as data accrue. This is because 

the BR will be < 1 when the data favor the denominator of the HLOD (“no linkage”) over the 

numerator (“linkage”), as a direct benefit of utilizing integration rather than maximization to 

handle unknown parameters.  
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The combination of sequential updating and accumulation of evidence both for and against 

linkage gives graphs of the PPL their characteristic appearance, as was already evident in the 

very first application we tried [33]. As Figure 1 illustrates, PPL plots tend to show very clear 

separation of signal from background noise, making visual interpretation straightforward. In this 

application the sequentially updated PPL was also singularly successful at localizing all four of 

the underlying trait genes based on several heterogeneous sets of simulated data, compared with 

various meta-analytic approaches [34]. 

While the PPL and the philosophical framework in which it is embedded have both evolved 

considerably since the early applications, these two themes – figuring out how to compute what 

we really want to know, and ensuring the correct accumulation of evidence across multiple data 

sets – distinguish the focus of KELVIN and have influenced all facets of its development.  We 

note also that originally we had an additional motivation in mind, namely the prospect of being 

able to use Bayes’ theorem to include prior genomic information, e.g., regarding known sex 

differences in genetic maps. While this remains a topic of interest, thus far in application to 

typical human genetic data sets it has proved less useful than we had anticipated [35]. 

 

(2) Extension of statistical models   

2.1 Integration over trait model parameters The original PPL utilized a simple 

parameterization for a dichotomous trait (DT), based on extensive research on robust 

approximating single-locus models for multi-locus traits (see e.g., [23, 36-39] and the work of 

many others). The model was parameterized in terms of a disease allele frequency p, three 

penetrances fDD, fDd, fdd corresponding to each possible trait genotype (assuming a biallelic 

locus), and the heterogeneity parameter α.  
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Initially, following current practice at the time, we assumed that it was necessary to fix the 

parameters of the trait model, even if that meant fixing them at wrong values. However, 

theoretical developments had already made clear that this was not necessary [10-13, 40], and that 

maximum likelihood could be used to estimate the trait models from linkage data, by 

maximizing the LOD over the trait model, i.e., calculating the MOD [40]. But in the presence of 

heterogeneity, the trait model itself can reasonably be expected to differ across data sets. In this 

context, the MOD's use of maximization to handle the unknown trait model is problematic, 

because maximizing separately in each data set results in a statistic that tends to infinity even at 

unlinked loci [28].  

By contrast, Bayes' theorem lends itself immediately to integrating over the nuisance 

parameters of the unknown trait model while maintaining the ability of sequential updating to 

accumulate evidence both for and against linkage. Our first application of this approach involved 

simple model averaging [41], based on uniform priors for each parameter with some constraints 

(e.g., an ordering constraint on the penetrances). This simple approach appeared to work quite 

well, both in simulation studies [42] and in application to real data [41, 43]. Integration over the 

trait parameter space is now automatic for all forms of the PPL, using essentially this same 

approach. Thus from this point forward, letting γ represent the parameters of the trait model, we 

assume that the PPL is computed based on 

  BR(! | D) = 10HLOD" f (! ) f (# ) f ($ ) d$ d#.        Eq 6  

2.2 Quantitative Traits KELVIN handles QT data using the QT model from LIPED [44].  

This model is parameterized in terms of three normal distributions, one for each of three possible 

trait genotypes (under the usual two-allele model).  The advantages of this parameterization 

include the fact that it is a direct and simple extension of the dichotomous trait model, with 
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penetrances replaced by means, and as a result the resulting QT LOD is also inherently 

(approximately) ascertainment corrected [12, 13]. Moreover the assumption of normality at the 

genotypic level is far weaker than the assumption of normality at the population level required 

by some other parameterizations (see [45] for evaluation of the QT-PPL under violations of 

normality in comparison to other methods).  

The drawback to LIPED’s implementation of this QT model – and presumably the reason the 

model has not been more widely applied – was that the user was required to input specific values 

for each of the genotypic means and variances, and of course in practice these are completely 

unknowable prior to discovery of the underlying QT gene. Kelvin, however, integrates out the 

QT trait parameters, bypassing this difficulty altogether; see [45] for details. 

We also extended the model to allow for both DT and QT measurements within families 

under the QT threshold (QTT) model.  This is useful when QT measures are available in 

relatives but not affected individuals, e.g., in studying autoimmune thyroid disease (AITD), for 

which thyroid autoantibodies (TAb) can be meaningfully measured only in unaffected relatives 

of AITD patients (TAb levels are affected by treatment), but the patients themselves were known 

only to have had elevated TAb at some point in the past. In order to model a common genetic 

factor for AITD and TAb simultaneously, the QTT model utilizes QT values in the relatives, but 

assumes only that affected individuals have TAb above some threshold. The threshold itself is 

treated as another nuisance parameter and integrated out of the BR with the other trait 

parameters. See [17] and also [46] for additional applications of this model. 

We note too that even the distributional assumption of normality at the genotypic level is 

easily modified in these models, simply by swapping out the underlying function calls to a 

normal density (or cumulate distribution function) with calls to some other density function. 
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Currently the standard KELVIN QT model utilizes calls to an underlying t-distribution, for 

reasons of numerical stability; options for using a χ2 distribution to handle traits with floor 

effects are available (with integration over the single degrees of freedom parameter), as are 

models utilizing left and/or right truncation of the t-distribution. However, the truncation models 

are not yet well evaluated in application to real or simulated data. 

2.3 Liability classes, gene-gene interactions, and imprinting KELVIN also utilizes liability 

classes (LCs), in much the same way that LCs are implemented in other standard linkage 

packages, but again with the “twist” that Kelvin integrates over penetrances (or means, 

variances, in the case of a QT) separately for different LCs. This is therefore a very flexible 

technique for allowing for covariate-dependent penetrances. Individuals can be coded into 

separate LCs based on sex, age-of-onset, clinical subtype, etc., allowing the data to dictate 

whether members of different LCs have different underlying penetrances, up to and including the 

case in which members of one or more LCs do not have a genetic form of disease at all (i.e., 

have equal penetrances regardless of genotype at a given locus).  

There is, however, a significant limitation on the number of LCs KELVIN can currently handle, 

due to the computational burden of the numerical integration process; see also below. At present, 

KELVIN can in general handle no more than four LCs, with some applications permitting only 

three.  The upper bound also depends to some extent on available hardware. In our experience, 

however, this is less of a limitation in practice than it might at first appear.  Model	
  integration	
  

itself	
   tends	
  to mitigate the effects of collapsing data into fewer, more broadly defined	
  classes,	
  

providing a level	
   of	
   robustness that may	
   be	
   lacking	
   from,	
   for	
   instance,	
   fixed-model LODs. 

Allowance for larger numbers of LCs is, nevertheless, an aim of ongoing computational 

improvements.  
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2.4 Epistasis and Imprinting One application of LCs that we have found to be very effective 

is for modeling a particular form of two-locus gene-gene interaction. Coding individuals into 

LCs based on genotype at an associated SNP can be a powerful and computationally feasible 

approach to discovering gene-gene interactions, both in family data and case-control data, and 

even on a genome-wide basis [32, 47] This approach is based on a straightforward underlying 

epistasis model corresponding to genetic (or causal) interactions (see [48, 49] for further details). 

KELVIN currently allows for one additional type of covariate-dependent penetrance (or QT 

mean), viz., dependence on parent-of-origin. This option is implemented through a 

parameterization in terms of four, rather than three, penetrances (or means), allowing the 

penetrance for a heterozygous individual to depend on whether the putative risk allele was 

inherited from the mother or the father.  

2.5 Linkage Disequilibrium (LD) KELVIN’s underlying parameterization of the linkage 

likelihood also lends itself readily to incorporation of trait-marker LD.  In essence, rather than 

assuming equal phase probabilities for unphased genotypes, the likelihood is written in terms of 

unknown phase probabilities, which are then integrated out as additional nuisance parameters. In 

practice, this is accomplished by including the standardized LD parameter D' [50] in the HLOD's 

underlying likelihood, for a statistic we called the LD-LOD [51], or more explicitly, LD-HLOD. 

By placing a point mass over D' = 0 (no LD), we can easily formulate the posterior probability of 

LD (PPLD) or the PPLD|L (conditioned on linkage) [52], based on  

 BR(!,D ') = 10LD"HLOD# f (! ) f (D ') f ($ ) f (% ) d% d$.       Eq 7  

By restricting the prior probability of LD to a very small constant value outside the region of 

tight linkage, this statistic implicitly models trait-marker allelic association due to tight linkage 

only.  We have verified that this approach works not only for pedigrees, but also for case-control 
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or trio data [32], and have applied the method to genome-wide association data sets [19, 53]. In 

principle, the PPLD and PPLD|L are immediately applicable to sequence data as well, subject to 

the same caveats that apply to any association-based analysis of individual sequence variants 

(e.g., low power for rare variants). 

 By virtue of the underlying implementation, KELVIN’s approach to LD analyses is uniquely 

flexible. Virtually all features available to the PPL are also available to the PPLD, e.g., the PPLD 

can readily be run for DT, QT, or QTT models, combined with LCs for purposes of gene-gene 

interaction modeling, etc..  The PPLD can also be seamlessly applied to mixtures of case-control, 

trio, affected sib pair, and extended pedigree data; and for QT data unrelated individuals can be 

analyzed on a "case-only" basis (no separate controls). Finally, in situations in which the PPL 

has been calculated based on previous data sets, it can be used as the “prior” information for 

linkage in the joint PPLD for linkage and association. This provides a rigorous method for 

utilizing linkage information to inform association analyses.  See [32] for further details, and [18, 

19] for illustrative applications. 

One drawback to the PPLD as currently implemented is that there is no ready mechanism for 

covariate adjustment for population structure. Ancestrally homogeneous data subsets, as 

determined by standard methods, can be analyzed separately, and sequential updating can then 

be used to accumulate evidence across subsets if desired. While the PPLD appears to be no more 

sensitive to issues such as Hardy-Weinberg violation than other methods (see [32]), sensitivity to 

subtle population structure effects remains an ongoing area of investigation. 

  

(3) KELVIN’s Computational Underpinnings 
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3.1 Polynomial Likelihoods KELVIN is essentially a re-engineered version of Vittesse [54, 

55], maintaining all of the essential efficiencies and functionality of Vittesse while adding some 

additional features of its own [56]. The first substantial distinction between the programs lies in 

KELVIN’s use of polynomial representations of underlying likelihoods.  

The motivation for this approach has to do with the computational demands of numerical 

integration over the trait parameter space. Our original implementation was easy to program but 

quite crude: we specified a fixed set of values for each parameter, leading to a fixed grid of 

values across all parameters; the LOD was then computed by brute force at each point in the grid 

and the results averaged across the grid.  By "brute force," we mean that a linkage program (such 

as Vittesse [54] or Genehunter [57]) was run one time for each point in the grid. For a DT 

multipoint analysis this involved writing 33,000 input files and running the linkage program 

33,000 times for each calculating position on the genome. But almost all of this file writing and 

computation is in principle unnecessary, because the underlying pedigree peeling and ancillary 

operations are identical across the 33,000 runs; all that changes are the numerical values of the 

trait parameters. 

By contrast, KELVIN takes a single input file, peels through each pedigree once (per position), 

and stores the resulting likelihood as a polynomial in the trait parameters, now represented as 

algebraic variables rather than numbers (Figure 2) ([58, 59]; see also [60]). This polynomial can 

then be evaluated as many times as is necessary to traverse the parameter grid. Many terms will 

also recur repeatedly within and across polynomials. Upon first evaluation, KELVIN stores the 

values for these terms in hash tables for subsequent look-up, achieving additional savings in 

compute time. Since the peeling step is relatively computationally intensive, whereas the 

evaluation of a polynomial function can be done extremely fast, this approach results in a 
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dramatically faster calculation of the PPL. Depending upon pedigree structures and particular 

marker configurations, the speed up can be on the order of 1,200 fold using this approach [58].   

The entire polynomial can also be stored as an optimized, compiled dynamic library for reuse 

in further analyses. There are situations in which this results in substantial additional time 

savings. Finally, we can embed the compiled Elston-Stewart based polynomial for the trait data 

in Lander-Green [4] or MCMC calculations covering the marker data, for a very efficient 

approach to integrating over trait parameters when utilizing these other algorithms. 

3.2 Fast and accurate numerical integration A second major innovation embedded in 

KELVIN's architecture has to do with the underlying framework for numerical integration. The 

brute-force approach of averaging over a predefined fixed grid of parameter values is not just 

inefficient, but also potentially inaccurate. E.g., for bounded parameters this method overweights 

edges (e.g., θ = 0, fdd = 0, etc.). But we were reluctant to turn to MCMC, both because it was 

difficult to guarantee accuracy in any given application, and because each future extension to the 

statistical models could necessitate substantial additional work on samplers. We wanted 

something guaranteed to be accurate, fast, and readily deployed for newly implemented models. 

KELVIN therefore uses a modified version of DCUHRE [61], a form of adaptive or dynamic 

quadrature, combining deterministic selection of points within regions with dynamic decisions 

regarding progressive subdivision of regions, based on error estimates on the integral. The 

algorithm is theoretically guaranteed to be accurate up to 13-15 dimensions, and even the more 

complex models in Kelvin generally stay well within this limit.  As adapted and implemented in 

KELVIN, this approach is both highly accurate and extremely efficient, being on average 31,000 

times faster than our original approach [62] (Figure 3).  
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3.3 Additional software engineering features KELVIN takes advantage of commonly 

available distributed computing resource management systems in order to efficiently distribute 

computation across commodity computing hardware, utilizing other standard programming (e.g., 

multi-threading) and hardware (e.g., solid state drives) tools to gain further efficiencies (Figure 

4). We	
  are	
  currently	
  exploring	
  the	
  possibility	
  of	
  distributing	
  calculations	
  to the cloud.  

KELVIN	
   makes	
   use	
   of	
   a	
   multi-agent system (MAS) to decompose and distribute the 

computational workload across available resources while utilizing DCUHRE’s dynamic 

integration capabilities. This is particularly handy for applications involving “mixing and 

matching,” e.g., it allows for analysis of a single set of pedigrees that have been genotyped at 

different markers, or that have differences in inter-marker distances and marker allele 

frequencies. Such calculations would otherwise be impossible in conjunction with DCUHRE’s 

dynamic integration algorithm. Use of a MAS also allow for calculations based on a mixture of 

algorithms, e.g., Lander-Green [4] for smaller pedigrees and Elston-Stewart [1] for larger ones, 

within a single data set. While at present the MAS is only implemented in-house, we are 

currently working on incorporating this functionality into the distributed version of KELVIN. 

	
  KELVIN	
   has	
   some	
   other	
   embedded	
   computational	
   efficiencies	
   beyond	
   those	
   already	
  

present	
   in	
   Vittesse	
   [54].	
   For	
   instance,	
   the	
   code	
   automatically	
   identifies	
   repetitions	
   of	
  

identical	
   data	
   structures	
   (for	
   instance,	
   all	
   cases	
  with	
   a	
   given	
  marker	
   genotype	
   in	
   a	
   case-­‐

control	
  data	
  set),	
  computing	
  likelihoods	
  only	
  once	
  for	
  each	
  such	
  structure	
  and	
  multiplying	
  

an	
  appropriate	
  number	
  of	
  times	
  to	
  obtain	
  the	
  likelihood	
  for	
  the	
  set	
  of	
  such	
  structures.	
  This	
  

can	
   result	
   in	
   substantial	
   savings	
   particularly	
   for	
   case-­‐control	
   or	
   trio	
   data,	
   where	
   only	
   a	
  

small	
  number	
  of	
  distinct	
  observations	
  are	
  possible	
  within	
  data	
  sets.	
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3.4	
   Running	
   KELVIN	
   KELVIN	
   uses	
   common	
   input	
   file	
   formats;	
   details	
   are	
   in	
   the	
  

documentation,	
  which	
  is	
  downloadable	
  from	
  http://kelvin.mathmed.org.	
  Prebuilt	
  binaries	
  

are	
   also	
   available	
   at	
   http://kelvin.mathmed.org,	
   for	
   a	
   variety	
   of	
   platforms	
   including	
  

Windows/cygwin,	
   Macintosh,	
   and	
   Linux	
   environments.	
   	
   (Users	
   are	
   asked	
   to	
   create	
   an	
  

account	
   and	
   provide	
   an	
   email	
   address	
   before	
   downloading	
   the	
   software,	
   to	
   facilitate	
  

notification	
   regarding	
   bugs	
   and	
   program	
   updates.	
   Documentation	
   can	
   be	
   downloaded	
  

without	
   an	
   account.)	
   System	
   requirements	
   depend	
   heavily	
   on	
   the	
   data:	
   case-­‐control	
   and	
  

trio	
   LD	
   analyses	
   are	
   feasible	
   on	
   almost	
   any	
   machine,	
   as	
   are	
   linkage	
   analysis	
   of	
   nuclear	
  

families	
  to	
  small	
  extended	
  pedigrees	
  based	
  on	
  a	
  small	
  number	
  of	
  markers	
  per	
  position	
  (for	
  

instance	
   using	
   microsatellites).	
   Calculations	
   on	
   larger	
   pedigrees,	
   particularly	
   multi-­‐

generation	
  pedigrees	
  with	
   loops	
  and/or	
  substantial	
  missing	
  data	
   in	
   top	
  generations,	
  may	
  

require	
   more	
   memory	
   than	
   most	
   desktop	
   machines	
   will	
   have,	
   as	
   do	
   multipoints	
   using	
  

several	
  markers	
  at	
  a	
  time.	
  (We	
  assume	
  that	
  when	
  using	
  SNPs	
  for	
  linkage	
  analysis,	
  the	
  user	
  

would	
  select	
  a	
  subset	
  of	
  SNPs	
  up	
  front,	
  culling	
  the	
  map	
  for	
  strong	
  marker-­‐to-­‐marker	
  LD.)	
  

We	
   are	
   currently	
   supporting	
   a	
   limited	
   set	
   of	
   KELVIN	
   functions	
   through	
   our	
   website	
  

(kelvin.mathmed.org),	
  permitting	
  users	
  to	
  run	
  jobs	
  using	
  our	
  large	
  Linux	
  cluster.	
  The	
  web	
  

version	
   is	
   under	
   ongoing	
   development,	
   with	
   a	
   goal	
   of	
   eventually	
   making	
   MAS,	
   Lander-­‐

Green	
   [4]	
   and	
  MCMC	
  options	
   available	
   to	
   outside	
   users.	
   Also	
   planned	
   is	
   a	
   downloadable	
  

tool	
   for	
   estimating	
   the	
   required	
   compute	
   time	
   and	
   resources	
   for	
   particular	
   data.	
   	
   In	
   the	
  

mean	
  time,	
  users	
   interested	
   in	
  knowing	
  whether	
  specific	
  data	
  sets	
  would	
  be	
  amenable	
  to	
  

KELVIN	
  analysis	
  are	
  welcome	
  to	
  email	
  us	
  at	
  kelvin@nationwidechildrens.org	
  for	
  assistance.	
  	
  	
  	
  

The	
  user	
  selects	
  options	
  using	
  a	
  simple	
  syntax	
  in	
  the	
  configuration	
  file.	
  (The	
  web	
  version	
  

provides	
  a	
  simple	
  interface	
  for	
  setting	
  up	
  the	
  file.)	
  While	
  most	
  combinations	
  of	
  options	
  are	
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compatible	
  with	
  one	
  another,	
  KELVIN	
  will	
  notify	
  the	
  user	
  if	
  incompatible	
  choices	
  are	
  made	
  

(for	
   instance,	
   “multipoint”	
   and	
   “LD,”	
   since	
   multipoint	
   trait-­‐marker	
   LD	
   analysis	
   is	
   not	
  

currently	
   supported).	
   The	
   website	
   includes	
   a	
   KELVIN	
   manual,	
   which	
   provides	
   tutorial	
  

examples	
  illustrating	
  how	
  to	
  set	
  up	
  the	
  various	
  types	
  of	
  runs.	
  

KELVIN	
  produces	
  1-­‐2	
  standard	
  output	
   files,	
  depending	
  on	
  the	
  analysis	
  being	
  run.	
  These	
  

include	
  the	
  PPL	
  (and/or	
  PPLD)	
  for	
  each	
  position,	
  organized	
  by	
  chromosome,	
  and	
  the	
  BRs	
  at	
  

each	
   position.	
   The	
   BRs	
   serve	
   as	
   the	
   input	
   to	
   a	
   utility	
   program	
   that	
   performs	
   sequential	
  

updating	
  and	
  returns	
  final	
  PPLs	
  (and/or	
  PPLDs)	
  (Figure	
  5).	
  	
  A	
  separate	
  option	
  outputs	
  the	
  

MOD	
  score	
  [40]	
  (the	
  LOD	
  maximized	
  over	
  trait	
  parameters)	
  and	
  the	
  maximizing	
  values	
  of	
  

those	
   parameters	
   (maximum	
   likelihood	
   estimators,	
   or	
   MLEs)	
   [10,	
   11,	
   13];	
   fixed-­‐model	
  

LODs	
  can	
  also	
  be	
  calculated.	
  The	
  MLEs	
  should	
  be	
  interpreted	
  with	
  some	
  care,	
  however,	
  as	
  

DCUHRE	
  is	
  optimized	
  for	
  integration	
  rather	
  than	
  maximization.	
  	
  In	
  general,	
  MLEs	
  reported	
  

by	
  Kelvin	
  will	
  be	
  close	
  approximations	
  to	
  the	
  true	
  MLEs,	
  but	
  in	
  particular	
  cases	
  of	
  interest	
  

this	
  should	
  be	
  independently	
  verified.	
  	
  

A	
   separate	
   graphing	
  program,	
  KELVIZ,	
   is	
   distributed	
   as	
   a	
   freestanding	
   application	
  with	
  

the	
   KELVIN	
   code. KELVIZ allows the user to read in KELVIN output on a per-chromosome or 

genome-wide basis, with the ability to overlap output from multiple files for visual comparison 

of results across different data sets or subsets. Various options for annotating peaks and peak 

boundaries are available, and graphs are readily configurable for output under several available 

formats (.png, .eps, .pdf, .svg, .tif).   Figure 6 illustrates some of these features.	
  

 

Discussion  
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Two themes have characterized the development of KELVIN as a piece of software. The first is 

our attitude towards software engineering. Human geneticists have a tendency to prefer statistical 

software that can be written by statisticians, is extremely easy to use, and runs very quickly. But 

state-of-the-art code does not always fit this prescription: such code can be expensive to develop, 

requiring computational techniques beyond the competence of most statisticians; it can be 

difficult to run, for instance, requiring a certain level of familiarity with command line execution 

in Linux and access to hardware beyond a desktop machine; and it may run very slowly. But 

collection of clinical and molecular data in human genetics generally entails considerable 

investment of time and resources, and surely we want our statistical methods to be as robust and 

accurate as possible in extracting all available information from the data. Thus it seems strange 

to place a premium on simplicity and ease at the very final, data analytic, step of such studies. 

We have, therefore, repeatedly allowed our statistical models to outrun our computational 

capacity, relying on hardware upgrades and software engineering to render the required 

calculations feasible in real time. This is no different than what is done in the laboratory, where 

we embrace difficult molecular technologies that promise new types of data, working to bring 

down costs and logistical obstacles over time.  

We have also placed an emphasis on a unified framework, adding new features within the 

same program. This requires long-term coordination on code development by a team of 

professional programmers. By contrast, a more common model is to assign development of a 

novel statistical approach to an individual trainee who programs the approach de novo. This 

results not just in inefficient programs, but also in a proliferation of programs each of which is 

quite limited in scope (e.g., programs that can handle imprinting only nuclear families but not 

extended pedigrees, or perform association analyses in case-control data or trios but not both, 
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etc.). By contrast, virtually all KELVIN options are available in conjunction with one another and 

in seamless application to multiple data structures. We have also placed a premium on extensive, 

ongoing testing of the code in order to ensure continued accuracy.   

The second theme is the philosophical framework in which KELVIN is embedded. Throughout 

development of the code there has been an emphasis on maintaining the scale of KELVIN's 

outcome measures. To a great extent we feel that we have consistently achieved this objective, so 

that the PPL and PPLD remain directly interpretable regardless of number of parameters in the 

model, regardless of the type of model, and without requiring reference to a null sampling 

distribution in order to "correct" the scale.  

But scaling of evidence measures remains an ongoing concern, and since the original PPL 

proposal we have developed a certain agnosticism with regard to the particular scale of the PPL. 

The original argument [8] rested on the premise that what we really want to know is in fact the 

probability of linkage, and indeed, probabilities have the advantage of being on a familiar and 

readily interpreted scale. But if we rephrase the objective slightly, and say instead that what we 

are interested in is the evidence for linkage, this opens up the possibility that the probability scale 

would not necessarily be optimal. Thus at present we view the choice of the probability scale for 

the statistics reported by KELVIN to be somewhat arbitrary, albeit still convenient in terms of 

familiarity and interpretation. Possibly, future statistics in this "PPL" framework might no longer 

be probabilities at all, which is one reason we do not consider the PPL framework to be 

particularly Bayesian. In any case, KELVIN development has always progressed in parallel with a 

separate research program on the measurement of evidence, which is itself an ongoing area of 

active investigation [5, 6, 63, 64]. 
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Figure 1 The first application of the PPL: The original PPL sequentially updated across four 
highly heterogeneous simulated datasets. The x-axis shows all six simulated chromosomes; the 
y-axis shows the PPL, on the probability scale. The locations of all four underlying loci are 
clearly and accurately revealed. 
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Figure 2 Polynomial representation of pedigree likelihoods: The likelihood for a pedigree at a 
given genomic position is stored internally as a polynomial in the parameters of the model for 
rapid evaluation over large numbers of parameter values, exploiting redundancies in evaluated 
polynomial subterms using hash tables for further computational savings. 
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Figure 3 Fast and accurate non-stochastic numerical integration:  Schematic representation of (a) 
the original parameter grid for numerical integration over the trait space (points are shown for θ 
and D' only for purposes of illustration), (b) the grid as generated by DCUHRE, and (c) 
DCUHRE integrals compared to highly accurate (extremely dense grid) numerical integration, 
across a large range of BR values. 
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Figure 4 KELVIN's underlying software engineering: KELVIN utilizes commodity software for 
distributing calculations across a Linux cluster while exploiting hardware and software 
capabilities for further computational economies, including OpenMP for multithread processing, 
solid state drives (SSDs) for adjuvant memory, storage of polynomials as compiled code for 
rapid and repeated reuse, and a fast and accurate dynamic numerical integration algorithm 
(DCUHRE). 
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Figure 5 Sequential updating: KELVIN uses sequential updating to accumulate evidence across 
multiple sets of data or data subsets, via multiplication of the subset-specific BRs at each 
genomic location. 
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Figure 6 Using KELVIZ to explore and graph KELVIN output: KELVIZ is specifically designed for 
plotting KELVIN output. It has a large range of options for custom graph construction. Shown 
here are just a few of these: (a) a genome-wide plot of the PPL; (b) a view comparing genome-
wide PPLs across two different clinical subgroups; (c) a zoom in to a particular chromosome, 
displaying both clinical groups’ results overlaid, with an option to annotate features of the graph 
using information in the input file or other edited content; (d) a zoom in to a portion of a 
chromosome, overlaying two PPL plots with PPLD results from a genome-wide association data 
set. Data are taken from [19]. 
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