Peds-ONC Immunotherapy Center: Ex-vivo expansion of NK cells and electroporation with ROR1- and MCAM-specific chimeric antigen receptor (CAR) mRNA combined with IL-15 superagonist (N-803, ALT-803) to target and enhance function against neuroblastoma and Ewing sarcoma

Chu Y1, Luo W1, Nayyar G1, Gardenswartz A1, Jeng E2, Alter S2, Rhode PR2, Lee JH3, Ayello J1, Wong HC2, Cassidy KA, Behbehani GK2, Mardis ER4, Cripe TP4, Lee DA2, Cairo MS1,7,8,9

1Pediatrics, New York Medical College, Valhalla, NY; 2Altor BioScience, Miramar, FL; 3NantCell, Culver City, CA; 4Hem/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH; 5The Ohio State University Comprehensive Cancer Center, Columbus, OH; 6Medicine, Pathology, Microbiology and Immunology and 7Cell Biology and Anatomy, Maria Faren Children’s Hospital, New York Medical College, Valhalla, NY

Background
Neuroblastoma (NB) and Ewing sarcoma (EWS) are malignant pediatric solid tumors. Despite significant survival improvements in multiple pediatric malignancies, children with relapsed/metastatic NB and EWS continue to have dismal outcomes. The tyrosine kinase-like orphan receptor 1 (ROR1) and the melanoma cell adhesion molecule (MCAM) are novel cell surface proteins specifically overexpressed in NB and EWS. In collaboration with Dr. Dean Lee (Project 1), our group has developed a genetically engineered APC (KS62) expressing mbIL-21 and 4-1BB to expand peripheral blood mononuclear cells (PBMCs) into NK cells, leading to significant NK cell expansion and functional activation (Denman/Lee Plos One, 2012). ALT-803 is a novel IL-15 superagonist complex where mutant IL-15N72D is bound to an IL-15RaSasFc fusion protein. N-803 (ALT-803) has been shown to have superior biological activity, higher potency and longer half-life compared to IL-15, and is currently being tested in several clinical trials.

Objective
We hypothesized that ROR1- and/or MCAM-CAR expressed in ex-vivo expanded NK cells will enhance targeting against NB and/or EWS, and further enhance functional activity when combined with N-803/ALT-803.

Methods
PBMC were expanded with lethally irradiated KS62-4-1BBL-mbIL21 cells (exPBNK) (Denman/Lee Plos One, 2012). exPBNK cells were isolated using Miltenyi NK cell isolation kit (Chu/Cairo, Can Imm Res, 2015). ExPBNK cells (nNK) were electroporated with anti-ROR1- or MCAM-CAR mRNA with a 4-1BB signaling domain which is synthesized in vitro.

Functional cytotoxic activity of anti-ROR1- and MCAM CAR NK cells against NB and EWS cells were examined at different E:T ratios. IFN-γ levels were evaluated by ELISA assay.

Results

Figure 1. ROR-1 is highly expressed on different Neuroblastoma cell lines

Figure 2. ROR-1 CAR is highly expressed on exPBNK cells following mRNA electroporation

Figure 3. MCAM is highly expressed on Ewing sarcoma cells and primary tumors

Figure 4. MCAM CAR expression on exPBNK cells following mRNA electroporation

Figure 5. Significant Increase in In-vitro Cytotoxicity against NB and EWS cells by ROR1- and MCAM-CAR NK cells

Figure 6. In-vitro Cytotoxicity against NB (SKNB2E2) cells at 24 hours by ROR1-CAR NK cells in combination with ALT-803

Figure 7. Addition of ALT-803 significantly improved the in vitro cytotoxicity against CHLA255 cells at low E:T ratio

Figure 8. Enhancement of Interferon-gamma secretion against multiple neuroblastoma cell lines

Conclusions
These data demonstrated that anti-ROR1- and MCAM-CAR expressed in ex-vivo expanded NK cells are highly active against NB and EWS cells, respectively. N-803 significantly increases in vitro cytotoxicity of anti-ROR1 CAR NK cells against ROR1 positive NB cells. In vivo studies using NB and EWS xenograft mouse models are currently in progress. Through interactions with other projects and shared resource cores (Dr. Elaine Mardis and Dr. Greg Behbehani), we will further investigate novel and innovative methodologies including SOCS3-deleted and/or TGFβ-imprinted NK cells (Project 1, Dr. Dean Lee) and myeloid-lymphoid-immunotherapy (Project 4, Dr. Tim Cripe) to circumvent chemotherapy resistance in pediatric solid tumors by CAR NK combinatorial immunotherapy.

Acknowledgements
ROR1-CAR, N-803, CHLA-136 and CHLA-255 cells, MCAM scFv were generously provided by Riddell S, MD, Fred Hutch, WA, Altor BioScience, Steger R.C. MD, UCLA, and Bin Liu, PhD, UCSF, respectively. Funded in part by the National Cancer Institute Cancer Moonshot U54-CA235261-01A1

References
Denman/Lee Plos One, 2012
Chu/Cairo, Can Imm Res, 2015
Xu/Wong, Cancer Res, 2013
Han/Wong, Cytokine, 2011